Бестрансформаторный блок питания 12в своими руками

Бестрансформаторный блок питания 12в своими руками

Часто нужно запитать свои самоделки, а блока питания на нужное напряжение нет. Конечно, для проверки можно воспользоваться батарейками. Подобрать нужное количество, для получения нужного напряжения, но для постоянной работы такой подход нерационален. Давайте рассмотрим варианты изготовления блоков питания для светодиодов от простого и дешевого к более сложному и дорогому.

Бестрансформаторный блок питания для светодиодов

Суть такого блока заключается в использовании балластного (гасящего) конденсатор. На нашем сайте есть подробная статья о таком БП, в которой вы можете найти калькулятор для расчёта конденсатора. В общем виде схема выглядит следующим образом:

Такой вариант имеет массу недостатков:

  1. Нет стабилизации выходного напряжения;
  2. нет гальванической развязки (трансформатора);
  3. нет разряжающего резистора на балластном конденсаторе, поэтому есть риск поражения электрическим током от C1.

Приняв эти недостатки и доработав схему, получаем следующее бестрансформаторное питание светодиодов на 12В.

Вместо D1, микросхемы линейного стабилизатора L7812, может быть установлена любая другая на необходимое напряжение (7805 и т.д. а также отечественные стабилизаторы КРЕН).

Альтернативный вариант схемы БП для светодиодной ленты, при сборе своими руками – вместо линейного стабилизатора использовать стабилитрон или параметрический стабилизатор из стабилитрона и транзистора. Преимуществом такого решения есть гибкость в настройке напряжения стабилизации, ведь если у вас нет подходящего стабилитрона, вы можете два других соединить последовательно и добиться нужной величины напряжения.

Для изготовления самодельного блока питания для светодиодной ленты подойдёт отечественный стабилитрон серии Д818Д, рассчитанный на напряжение порядка 12-13 В.

Другой способ стабилизации – собрать стабилизатор тока на двух транзисторах. Ток стабилизации задается резистором R2.

R2 = 0,7 * Iст; R1 = 3,9кОм.

Стабилизатор тока стремится выдать заданный ток, это оптимальный вариант для бестрансформаторного питания отдельных светодиодов.

Переделка готовых БП для работы со светодиодами

Начнем с самых распространённых блоков питания – зарядных устройств от мобильного телефона. Выходное напряжение от 5 до 9 вольт постоянного тока, стабилизированная схема и гальваническая развязка от сети. Это делает использование подобных схем блока питания для светодиодной ленты безопаснее предыдущего варианта.

Самым простым вариантом будет использование токоограничительного резистора, для удобства есть онлайн калькулятор для расчета резистора.

Схемы дешевых блоков питания от зарядок

Для начала взгляните на схемы от различных зарядных устройств, с виду они отличаются, а принципиально – идентичны (картинки можно листать).

Большинство зарядных устройств для мобильного телефона построены на базе блокинг-генератора, или как его еще называют – автогенератора.

Выпрямленное напряжение поступает на схему, состоящую из силового транзистора, который управляется через базовую обмотку и резистор смещения базы, трансформатора, и цепи обратной связи. Это простейший импульсный блок питания. Подойдет как схема для блока питания светодиодной ленты, если её немного модернизировать.

Принцип работы

Обмотки трансформатора подключены таким образом, чтобы на базе транзистора и коллекторной обмотки, напряжения наводились в противофазе, иначе говоря «наоборот». Когда транзистор открывается до конца через резистор базы, нарастание тока в коллекторной обмотке прекращается и на базовой обмотке возникает противо-ЭДС, закрывающее транзистор. Ток в коллекторной цепи снижается, а после достижения нулевого значения процесс повторяется.

Однако это описание очень упрощено, дано только для понимания общего принципа возникновения колебаний высокой частоты переменного тока на импульсном трансформаторе.

Вы могли заметить, что на каждой из схем выше я обвел красным цветом один из элементов – это стабилитрон (диод Зенера). Он установлен как раз в цепи обратной связи по напряжению. Когда выходное напряжение достигает напряжения стабилизации, в работу вступает отрицательная обратная связь, которая закрывает транзистор.

В более дорогих (см. вторую схему) обратная связь заведена через оптопару, это повышает надежность схемы в целом.

Обобщенная схема блокинг-генератора изображена на рисунке ниже, все остальные компоненты в зарядных устройствах нужны для стабилизации (обратной связи), индикации, защиты от аварийных режимов работы и т.д.

Делаем блок питания

Раз стабилитрон имеет напряжение стабилизации — с его помощью осуществляется обратная связь. Значит, чтобы изменить выходное напряжение, нужно его заменить на другой по величине Uстаб.

Выходное напряжение зарядного устройства приблизительно равно номиналу стабилизатора. Оно отличается от номинального на стабилитроне от 0,3 до 1В и зависит от некоторых особенностей схемы. Обратите внимание, в приведенных примерах стоят стабилитроны от 5 до 7 вольт.

При изменении выходного напряжения изменяется и ток, который может выдать зарядное устройство. Причем изменение тока обратно-пропорционально величине изменения напряжения. Т.е. увеличив напряжение наполовину, допустим до 7,5 вольт, ток упадет в два раза.

Чтобы своими руками сделать блок питания для светодиодов, нужно определиться как вы будете подключать нагрузку, чтобы сделать выводы о необходимом напряжении.

Если вы собираетесь питать один светодиод или несколько соединенных параллельно, вам нужно выходное напряжение порядка 3-х вольт (как определить напряжение светодиода). Далее подобрать необходимый стабилитрон, например подобный – на 3,3В. При параллельном подключении не забудьте проверить напряжение через каждый из светодиодов и скорректировать его дополнительным резистором.

Многие блоки питания, не только зарядки для мобильных, сделаны по этой схеме. Более мощные и дорогие модели (незначительно), и модели с другими силовыми схемами оборудованы несколько иной и более простой в настройке обратной связью. Зачастую которая выполнена на микросхеме TL431 (или любые другие буквы и «431» в названии).

Эта интегральная микросхема выполняет роль обычного стабилитрона. Отличия в том, что TL431 – это регулируемый стабилитрон и имеет корпус с 3-мя выводами

Выходное напряжение задается изменением соотношения резисторов R1 и R2 (см. следующую схему), далее размещена типовая схема блока питания с TL431. Кругом обведены резисторы, которые нужно подбирать для подстройки, формула подбора такова:

Читайте также:  Варенье из киви пятиминутка

Vout = 1 + (R1 / R2) * Vref, где Vref – приблизительно 2,5В

Мнемоническое правило: В обвязке TL431 есть 2 резистора, задающие напряжение стабилизации. Верхний чем больше – тем выше напряжение, соответственно, чем ниже сопротивление, тем меньшее напряжение выдаст БП. Нижний – наоборот, чем больше сопротивление – тем ниже напряжение (верхний повышает, нижний уменьшает).

3 варианта блока питания из зарядного

Первый вариант. Вы можете сделать регулируемый блок питания таким образом: замените один из резисторов потенциометр, в зависимости от того куда вы его впаяете (вместо верхнего или нижнего) пределы регулировки будут изменяться.

Идеальный вариант поставить последовательно постоянный резистор и потенциометр, выставив за счет постоянного минимальный уровень напряжения на выходе блока питания, воспользовавшись приведенной формулой.

Описанными способами можно своими руками сделать блок питания для светодиодной ленты практически из любого старого блока питания, зарядного устройства и пр. Однако в некоторых случаях придется доматывать вторичную обмотку несколькими витками, этот способ несколько труднее и рассматривать его не будем.

Вторая схема. Регулировка аналогична, на R7 и R5.

Подобный блок питания, сделанный своими руками, превосходит бестрансформаторное питание светодиодов по всем параметрам. А что насчет цены – то не забывайте о том, что порывшись у себя в кладовой – вы наверняка найдете парочку заготовок.

Третий вариант – это модернизировать или доделать старые трансформаторные блоки питания.

Если выходное напряжение с диодного моста превышает 14 вольт, установите L7812 по указанной схеме и получите готовый БП для LED ленты, сделанный своими руками.

Если вы хотите сделать блок питания для отдельных светодиодов, схема изменится только номиналом стабилизатора – нужно будет установить 3-хвольтовую модель (7803). Или собрать параметрический стабилизатор как было описано выше. Такой блок питания лучше чем первый рассмотренный, но хуже чем второй. Он больше и имеет меньший КПД.

Блок питания для LED ленты из зарядного от ноутбука

Блоки питания от ноутбуков, мониторов и другой бытовой и компьютерной техники имеют напряжение от 12 до 19 и более Вольт. Если напряжение 12В – отлично, это идеально для светодиодной ленты. Но как изменить выходное напряжение, если оно не подходит под ваши нужды?

Вот такой регулируемый импульсный понижающий преобразователь напряжения выполнен на довольно старой надёжной и популярной микросхеме – LM2596. Модель, которая изображена на фото, имеет регулировку напряжения и тока, что позволяет его использовать как драйвер для мощных светодиодов, обеспечивающий очень качественное питание.

На фотографии видно в обозначении сокращение ADJ (adjustable) – что говорит о том, что это регулируемая модель. В продаже есть готовые схемы и отдельные ИМС для работы с фиксированным выходным напряжением, а именно: 3В, 5В и 12В. В вариантах на ток 2 и 3 Ампера каждая, имеют немного упрощённую схему.

Назначение элементов описано здесь, разница лишь в том, что на схеме выше отсутствует стабилизация тока и нет регулировки напряжения, как в предыдущем фото.

Понижающие преобразователи напряжения на LM2596 довольно популярны. Найти их можно в магазинах радиодеталей, но на Aliexpress можно купить в разы дешевле.

Схема их подключения проста, входные и выходные контакты подписаны, некоторые платы поставляются с запаянными зажимными клеммами. Подключите его к готовому БП на более высокое напряжение (от ноутбука, например) и блок питания для светодиодных ламп готов.

Такой вариант подходит для начинающих, если вы не хотите влезать в схему с паяльником или нет возможности добраться до элементов блока для модификации схемы (в случае трудно разбираемого корпуса и когда детали залиты компаундом).

Ремонт блока питания светодиодной ленты

Многие блоки питания, рассчитанные на среднюю и большую мощность (30 и более Вт), построены на интегральном драйвере со встроенным силовым ключом, типа KA5l0365, FSDH065RN и т.д. Такие решения применяются и в бытовой технике, например, в блоках питания DVD проигрывателей. Такие микросхемы взаимозаменяемы, стоит только определить цоколевку сгоревшего чипа и установить тот, который вам удалось найти.

Для ремонта блока питания для светодиодной ленты на 12В (и не только), схема почти не изменяется. Нужно совершить подключение подобно тому, что изображено ниже. Разумеется, с учетом распиновки.

Более сложные и надежные блоки построены на ШИМ-контроллерах:

Они аналогичны, ниже схема блока питания для светодиодной ленты с их использованием:

ШИМ-контроллер расположен в нижней части схемы, с помощью P1 (справа на схеме) осуществляется регулировка. Подбирая его величину, можно добиться нужного напряжения на выходе, чем-то похоже на регулировку 431 стабилизатора.

Даже если на вашем блоке нет потенциометра или подстроечника, вы можете его установить самостоятельно, заменив постоянный, аналогично приведенной мной схеме.

При ремонте смотрите на сигнал на выходе ШИМ, силовые ключи Т12 и Т13 подключенные к выводам 8 и 11 TL494.

На картинке ниже более наглядно изображена регулировка, потенциометр подключается к 1 вывод ИМС.

Таким образом вы можете своими руками экспериментальным путем сделать питание для светодиодной ленты из любого БП на 494 ШИМ-контроллере.

Практически все блоки питания можно своими руками перенастроить в узких пределах на необходимое напряжение питания светодиодной ленты. При этом вы обойдетесь минимальными затратами.

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Читайте также:  Блины ажурные рецепт с фото пошагово

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

Читайте также:  Вазы из цемента своими руками для сада

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «

», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Ссылка на основную публикацию
Беседки в частном доме с мангалом фото
Садовая беседка с мангалом – это прекрасное место для отдыха. Бревенчатые, дощатые, плетеные строения для мангала - покрыты специальным огнеупорным...
Белые обои в цветочек в интерьере
Самостоятельное воссоздание интерьера – дело не только экономное, но и хлопотное, поскольку требуется внимательно и качественно подбирать элементы интерьера и...
Белые обои с серебристыми цветами
Серебряный - холодный цвет, способен создать ощущение спокойствия аристократичности и изысканности. Интерьер, оформленный настенными покрытиями этого цвета нейтрален, и способен...
Беседки каркасные из дерева
Каркасная беседка – это идеальный вариант для отдыха на даче. Конструкция легко возводится, не требует особых умений и навыков. Сборная...
Adblock detector